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SUMMARY

Dynamic fracture and crack-arrest responses of the well-discussed wedge-
loaded rectangular, double cantilever beﬁm (WL-RDCB) specimens machined from ;
3.2 mm thick annealed polycarbonate sheet were studied by dynamic photoelasticity
and dynamic finite element analysis. A small, but finite plastic yleld zone
surrounded the propagating crack which resulted in crack velocities, dynamic
fracture toughness and crack arrest toughnesshlower than those observed previously

in 6.4 mm thick polycarbonate fracture specimens.

INTRODUCTION

Current experimental and numerical investigations in dynamic fracture involve
extensive use of dynamic photoeliificity [1,2] dynamic caﬁstics [3], dynamic finite
difference analysis [4,5], and dynamic finite element analysis [6,7]. The results
published in the above are based on the tﬁ;ory of elasto-dynamics and have evoked

a controversy regarding the existence of a material property, i.e., a unique

" dynamic fracture toughness, K

D’ versuyg crack velocityArelation, a, as a material

—

property which governs dynamic crack propagation and arrest [1,2,6,8]. Despite
this unresolved controversy on elastodynamic fracture, the increasing research
—

efforts in this field should eventually lead to a phenomenological dynamic frac~

ture criterion which can be used in either finite difference or finite element
codes to predict crack propagation histories in actual structures. For example,
recent numerical simulation of dynamic fracture in a thermally shocked structure
[9] correlated well with experimental results (10] and undoubtedly such practical
applications will increase as éﬁg.confroversies in elastodynamic fracture are
resolved.

Unlike the efforts in elastodynamic fracture, little basic research in dynamic

ductile fracture, particularly in the presence of large scale yielding has been

conducted to date. Earlier investigations on dynamic ductile fracture, including




.those of Kanninen et al [11]), Hahn et al [12] and Ogasawara et al [13] as well

as the recent papers by Koshiga et al [14] and Nora et al [15] involved pheno-
menological modelings of specific experiﬁental obgervations. While these results
are useful in predicting dynamic ductile fracture responses in spécific structures,
they fail to address the basic laws governing dynamic ductile fracture.

One major difficulty in dynamic ductile fracture research is the lack of suit-
able experimental technique with which the dynamic states of stress, strains,
plastic yield zone, etc. can be measured directly for detailed scrutiny. 1In
contrast, dynamic photoe%ggticity and dynamic caustics provide optical imaging
from which the dynamic stress intensity, Kgyn , among others can be extracted
for elastodynamic fracture studies. Lacking a pure experimental approach, one
method which can be used is the combined experimental-numerical procedure for
computigg Qynamic fracture parameters. In this procedure, experimental results
such as crack position versus time in a fracturing specimen, is used to drive a
crack in a finite element model of the fracture specimen. The numerical results, .
such as the equivalent dynmamic stress intensity factor for elastic analysis, dyna-
mic J-integral and crack opening angle, COA, among others can then be studied
as candidate dynamic ductile fracture criteria. The soundness of this procedure
when used in elastic analysis has been verified by one of the authors [2,16]. It
was then used in a series of sensitivity studies on the influence of various

dynamic fracture toughness, K p* versus crack velocity, i, relations (17,18]. An

I

obvious extension of this elastic procedure is its use in elasto-plastic analysis.
This paper reports some preliminary results obtained in the course of deve-

loping an experimental-numerical procedure for determining dynamic ductile frac-

ture toughness which could be used to characterize the dynamic ductile fracture.

EXPERIMENTAL ANALYSIS

The concurrent experimental analysis in this 1nvect}gation consisted of

. b 2 e s e s
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dynamic photoelasticity using thin, i.e., 3.2 mm thick, polycarbonate wedge-
loaded, rectangular double cantile&er beam (WL-RCB) specimens which is shown

by Figure 1. The annealed polycafbonate, from which the specimens were nachinéd,
has a well-defined yield point of 44 MPa, flows under high stresses, and exhibits
tensile instability with accompanying Lueder's bands. Under high strain rate
loading, such as in the vicinity of a propagating crack tip, the strain-rate
sensitive polycarbonate fractures in a cleavage mode without the large plastic
zone ahead of the propagating crack tip. Such ductile to brittle transition in
dynamic loading of polycarbonate is discussed in Reference [19]. Despite this
cleavage fracture appearance, the dynamic photoelastic.patterns in Figure 2(a)
and 2(b) show that the propagatiné crack tip 1s preceded by a small yield zone

of 1.2 mm and 0.4 mm diameters, respectively, and thus, reﬁresent dynamic frac-
ture in the presence of small scale yielding. The elastic region surrounding this
small yield zone also provides the elasto-dynamic state which can be used to ex-

tract apparent elastic fracture parameter for characterizing such dynamic ductile

' fracture. For example, the isochromatics form the standard loops from which appa-

rent dynamic stress intensity factor can be extracted through the use of well-
knpwn elasto-dynamic near-field solutions [20]. Possible errors involved in
characterizing the elasto—plastic‘dynamic field with such straight forward appli-
cation of elastic analysis will be discussed later. The l6-spark gap Cranz-Shardin
camera and the associatéd dynamic photoelastic systems used to record 16 discrete
dynamic photoelastic patterns in the fracturing polycarbonate WL-RDCB specimen has
been described in many previous papers and thus will not be repeated here.

In the as-received condition, the polycarbonate sheet exhibits considerable
residual stress distribution and thus the sheets were annealed after rough cutting.
This annealing,which caused some distortion and shrinkage, consisted of overnight

heating at 160°C, followed by gradual cooling at the rate of 5°C per hour. The

starter crack consisted of 0.4 mm wide edge crack approximately 25 mm length which




was machined and then chiseled to simulate a somewhat blunt crack tip. Static

and dynamic stress-fringe constant and Poisson's ratio at various strain rates,
all of which were determined previously t21]. were used in data reductions.
Static modulus of elasticity of E = 2,00 GPa and the yield strength of 44 MPa

were determined separately for this particular polycarbonate sheet.

N

CRACK TIP 1SOCHROMATICS IN THE PRESENCE OF SMALL SCALE YIELDING

The influence of small scale yielding on the dynamic isochromatics surround-
ing the crack tip was studied by a static Dugdale strip yield model (DM) as shown
in Figure 3. Since the Westergaard's stress function for a partially pressurized
semi-infinite ‘crack tip is known [22], the crack tip isochromat:lcs, T for a

' stationary crack with a Dugdale strip yield of length ry, can be expressed as

1
E - 1-_ - 2 2 -
g T 2[(oxx oyy) + lrrxy]Z (1a)
where T
: Yy ny 3
—— gin —— + s8in:
s:l.nel)M rDM 2 2
'oxx-o -KI ; b,2 r (1b)
yy /2rr D+ 1 + 2%
DM r (J.1-10)
T DM
DM ..
r 2] 3e
° . 81no ;L cos —— + co8 2
: 2t = -](I DM 2“ - (1c)
: Z"DM(;’- 2 o+ 1+ 2 X cosop,
DM DM

v Iyt b

wvhere an.and eDH are the polar coordinates with origin at the DM crack tip in
Figure 3. The stress intensity factor, KI’ corresponds to the negative of the
stress intensity factor at the DM crack tip without the Dugdale strip yield zone.

From the equality, the length of the DM zone becomes
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( 1 )2 (2)

where cy is the yield strength of the material.

The resultant crack tip isochromatics in the presence of a DM zone can be

T

obtained numerically for the highly loaded crack tip at the onset of crack pro-
pagation. For estimated stress intensity factor of KI = 2,44 HPaﬁ;, yield strength
of oy = 44 MPa and an isochromatic frange order of 7-1/2 or Tmax © 84.8 MPa in the
3.2 mm WL-RDCB specimen. The DM strip yield length is ry = 1.3 mm., Figure 4

shows the estimated crack tip isochromatics with the DM zone and the experimentally

observed isochromatics of Figure 2(a). The significant difference between the

estimated and experimental isochromatics indicate the amount of plasticity correc-

tion necessary to increase the elastic KI in the presence of small scale yielding.
The procedure then for estimating the apparent stress intensity factor

from the isochromatics in the presence of small scale yielding is to first estimate

the location of the far end of the crack tip yleld zome or the DM crack tip loca-
tion in the photoelastic pattern. An overdeterministic least square method [23] is B |
then used to fit at the DM crack tip a two parameter, elastic crack tip stress

field to the experimentally recorded isochromatics. Using the elastic stress inten- 4

sity factor thué computed, the DM stfip yield length ry is determined by equation
(2) and the estimated isochromatics is reconstructed numerically by the use of
equation (1). Should the computed ry be substantially different from the measured
ry, then ry must be remeasured and the above numerical procedure is repeated.
Fortunately, such repeated measurement was not necessary in the test analyzed for
this paper. The ratio of the maximum radial distances, r, and r_, in Figure 4, is

M DM
the plasticity correction factor. This procedure must be repeated until the suc-

ceeding plasticity correction factor approaches unity. However, in view of the
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approximate nature of the entire procedure, this iteration procedure was not
programmed into this data reduction scheme.

The above procedure is based on staﬁic crack tip yielding and obviously nﬁst
be modified for dynamic analysis. It, however, provides a first order estimate
of the plasticity correction involved in deducing the apparent dynamic stress
intensity factor from the dynamic isochromatics in the presence of small scale

yielding.

DYNAMIC FINITE ELEMENT ANALYSIS

The dynamic finite element algorithm used in this study differs with that
presented two years ago [24]. The new fracture package [2] includes a mechanism
for gradual release in crack tip nodal force as well as an iteration routine to

assure agreement between the prescribed and computed crack tip nodal forces in

this explicit code. Figure 1 shows the finite element breakdown used in this plane

stress analysis which is considered more appropriate for these thin fracture spe-

" cimens, despite the cleavage fracture surfaces. The dynamic finite element code

was executed in its elastic-plastic mode. The coarseness of finite element break-
down, i.e., 3.2 mm square in comparison to the observed maximum plastic yield zone
of 1 mm, however, forced the actual computation into its elastic mode except for
the initial 1-2 microseconds in crack propagation time. 'As a result, the dynamic

dyn

stress intensity factor, KI » was computed elastically using the dissipated

energy at the released node with Freund's equation [25]).

RESULTS OF DYNAMIC PHOTOELASTICITY

A total of seven dynamic photoelastic tests were conducted. Figure 2 shows
two typical dynamic photoelaaticpatter;sof a fracturing polycarbonate WL-RDCB
specimen. These dynamic photoelastic patterns show crack tip shadow patterns which

are believed to be caustics [3] generated by the large plastic strains in the con-
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fined plastic region ahead of the propagating crack tip. The size of such a
plastic zone ranges from ry = 1.3 mm to 0.04 mm. Minor distortions of the
otherwise elastic isochromatics in the vicinity of this plastic region is also
noted.

Apparent dynamic stress intensity factor, Kgyn s was computed by using the
data reduction procedure described'previously. Figure 5 shows the apparent
dynamic fracture toughness, which were obtained by this procedure, during dynamic
fracture and crack arrest in a polycarbonate WL-DCB specimen. The general
variation of these experimental results differs slightly with those obtained by
others (3,7). The apparent dynamic fracture toughness continues to decrease in

the former while distinct regions of contant K, after crack propagation were ob-

D

served in the latter. The crack initiation stress intenmsity factor of KIQ =

7.37 MPa/m is more than twice of the pop-in fracture toughness of KIC = 3.4 MPa/m

measured previously {21]. The measured apparent crack arrest fracture toughness
of KIa = 1,0 MPa m, however, is considerably lower than this pop-in fracture tough-
ness and lower than the KIa = 1.4 MPavm reported for the 6.4 mm polycarbonate
fracture specimens [2].

Also shown in Figure 5 is the crack velocity change with crack extension in
this WL-RDCB specimen. This crack velocity history was duplicated in the other
six specimens and are similar in shape to those reported‘by others [3,26] but the

terminal velocity is lower than that in Reference [2].

RESULTS OF DYNAMIC FINITE ELEMENT eNALYSIS

Figure 5 shows the calculated dynamic stress intensity factor obtained

through elasto-dynamic finite element analysis. As mentioned previously, the "
finite element analysis was executed in its elastic-plastic mode, but elaatic
analysis prevailed except for the initial 1-2 microseconds of crack propagation.

3

Agreements between calculated dynamic stress intensity factors and the measured




dynamic fracture toughness during crack propagation hibtory are apparent. The
precipitous drop in calculated dynamic stress intensity factor at the initial
phase of crack propagation can be in part attributed to the infinite plate
syndrome discussed by Perl [27]. It was also found that this precipitous drop
in dynamic stress intensity factor could be moderated by assigning a gradually
increasing crack velocity during the first 30-50 microseconds of crack piopaga-
tion following Reference [27]. Recent experimental results [20,28,29], however,
show that the crack velocity of a blunt starter crack immediately reaches the
terminal velocity upon propagation and does not gradually approach the terminal
velosity as postulated in Reference [27] during this crucial initial period of
crack propagation. These experimental evidences thus precluded adjustménts of
crack velocity to reduce the precipitous drop in K:yn v

Figure 6 shows the energy partitions during crack propagation in the
WL-RDCB specimens discussed previously. Although the dissipated plastic energy
at the plastic yield zone was not computed in this coarse finite element model,
"the decreasing total energy in Figure 6 indicated qualitatively, the small

plastic energy dissipated in the fracture process of polycarbonate WL-RDCB specimen.

CONCLUSIONS

1. Small—scalg yielding at the propagating crack tip does change the shape of
the crack-tip dynamic isochromatics.

2. Crack velocity, dynamic fracture toughness and crack arrest toughness are
lower in the presence of small-scale yielding at the propagating crack tip.

3. Dynamic stress intensity factor obtalned by elasto-dynamic finite element
analysis are in good agreement with the apparent dynamic fracture toughness
obtained through an elasto-plastic data reduction of the dynamic isochromatics
in the presence of small scale yielding. Elasto-plastic dynamic finite element

analysis, does not appear necessary for such dynamic fracture problems.

g s N DI PO




S v b s AR R

s 5

e A

S VTSN 1

e e MM G

9
4. The decreasing total energy indicate the influence of dissipated plastic
energy in the presence of a small plastic zone.
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FIGURE 3. DUGDALE STRIP YIELD ZONE AT THE CRACK

TIP OF A SEMI-INFINITE CRACK.
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